
lable at ScienceDirect

Estuarine, Coastal and Shelf Science 164 (2015) 433e442
Contents lists avai
Estuarine, Coastal and Shelf Science

journal homepage: www.elsevier .com/locate/ecss
Mapping estuarine habitats using airborne hyperspectral imagery,
with special focus on seagrass meadows

Mireia Valle a, b, *, Vicenç Pal�a c, Virgine Lafon d, Aur�elie Dehouck d,
Joxe Mikel Garmendia e, �Angel Borja e, Guillem Chust a

a AZTI, Marine Research Division, Txatxarramendi ugartea z/g, 48395, Sukarrieta, Spain
b Universidad Laica Eloy Alfaro de Manabí, Central Research Department, Ciudadela Universitaria, vía San Mateo s/n, 13-05-2732, Manta, Ecuador
c Institut Cartogr�afic i Geol�ogic de Catalunya, Catalan Earth Observation Program, Parc de Montjuïc, 08038, Barcelona, Spain
d GEO Transfert, UMR EPOC, CNRS e Universit�e de Bordeaux, Avenue des Facult�es, 33405, Talence Cedex, France
e AZTI, Marine Research Division, Herrera Kaia Portualdea z/g, 20110, Pasaia, Spain
a r t i c l e i n f o

Article history:
Received 25 November 2014
Received in revised form
13 May 2015
Accepted 26 July 2015
Available online 5 August 2015

Keywords:
Habitat classification
Estuaries
Remote sensing
Zostera noltii
Compact airborne spectrographic imager
* Corresponding author. Current address: Univer
Manabí, Central Research Department, Ciudadela Uni
13-05-2732, Manta, Ecuador.

E-mail address: mireia.valle@uleam.edu.ec (M. Va

http://dx.doi.org/10.1016/j.ecss.2015.07.034
0272-7714/© 2015 Elsevier Ltd. All rights reserved.
a b s t r a c t

Estuaries and coasts are among the most productive ecosystems and constitute valuable habitats for
biodiversity and ecosystem services. Amongst nearshore ecosystems, seagrass beds play a major role
enhancing biodiversity and water quality. Consequently, the development of new approaches to create
extensive and high-resolution habitat maps is required not only to implement conservation, restoration
and management plans, but also to establish adaptation plans to face climate change impacts. This study
particularly assesses the capability of hyperspectral airborne imagery acquired with Compact Airborne
Spectrographic Imager (CASI) to discriminate and map estuarine habitats, with special focus on Zostera
noltii seagrass meadows. To this end, 13 habitats were defined along the supralittoral, intertidal and
subtidal zones of an estuary, including Z. noltii seagrass meadows. The CASI sensor was configured to
acquire 25 bands in the visible and near infrared wavelengths with a ground sampling distance of 2 m.
Spectral bands were selected for species discrimination based on the spectral signature of the different
habitat classes. Six different band combinations were tested applying maximum likelihood classification
algorithm. The most accurate classification was obtained with 10 band combination (a mean producer
accuracy 92% and a mean user accuracy 94%). The classification of Z. noltii beds has been found to be
restricted to moderate and high dense meadows, however a vegetation index has been defined which
could be applied for mapping Z. noltii meadow cover. These results highlight the value of CASI data to
discriminate and map estuarine habitats, providing key information to be used in supporting the
implementation of environmental legislation, protection and conservation of coastal habitats.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Estuaries and coasts are among the most productive ecosystems
and constitute valuable habitats for biodiversity (Barbier et al.,
2011) and ecosystem services (Costanza et al., 1997, 2014).
Amongst nearshore ecosystems, seagrass beds play a major role
enhancing biodiversity and water quality (Duarte, 2002; Green and
Short, 2003; Beamount et al., 2007) and, accordingly, these plants
are regarded as a useful indicators due to their sensitivity to
anthropogenic pressures, being highly relevant as one of the
sidad Laica Eloy Alfaro de
versitaria, vía San Mateo s/n,

lle).
biological quality elements required for the assessment of the
ecological quality status in coastal and transitional water bodies
within the European Water Framework Directive (WFD, 2000/60/
EC). However, the estuarine and coastal habitats have been his-
torically altered and degraded (Halpern et al., 2008; Lotze, 2010)
and seagrass beds in particular, are undergoing a global decline
(Waycott et al., 2009). Moreover, in the coming decades, coastal
systems and low-lying areas will increasingly experience adverse
climate-related impacts (IPCC, 2014) exacerbated by increasing
human-induced pressures (Wong et al., 2014). Concern about the
negative repercussions derived from the loss of biodiversity and
ecosystem functions of these habitats has triggered the develop-
ment of conservation frameworks worldwide (Worm et al., 2006).
In order to assess the ecosystem status and the influence of natural
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and anthropogenic impacts over time, development of new ap-
proaches to create extensive and high-resolution habitat maps is
required (Chust et al., 2010). Such spatial information is of major
importance not only to implement conservation, restoration and
management plans of natural resources, but also to establish
adaptation plans to face climate change impacts (Hoepffner, 2006).

Mapping terrestrial or shallow biodiversity by traditional on-
ground sampling methods has become non cost-effective in the
face of remote sensing techniques,mainly due to: (i) sampling-point
field work is not adequate for covering extensive areas in high
detail; (ii) mapping large areas cannot be accomplished in a
reasonable time (Dekker et al., 2006), and (iii) several habitats are
inaccessible. In contrast, spaceborne and airborne optical remote
sensing have the potential to quickly and cost-efficiently map large
terrestrial and shallow areas with high resolution (Herkül et al.,
2013). In addition, remote sensing data can also be used to
perform time-series analysis in order to understand temporal and
spatial dynamics of different habitats (Lyons et al., 2013). A further
advantage of acquiring remote sensing data is that the products can
be analysed with different purposes over time. According to Phinn
et al. (2008), airborne image data can achieve more accurate re-
sults than satellitemultispectral data, mainly due to the high spatial
resolution of the data (which allows for a better delineation of small
or patchy habitats) and the high radiometric resolution (which in-
creases the level of mapping precision). The use of airborne instead
of spaceborne imagery also benefits fromauser-programmable date
of acquisition at optimal tidal and weather conditions (Finkbeiner
et al., 2001) and programmable limits of the spectral bands (Chen
et al., 1999). These are two important factors to consider since
estuarine habitats are subjected to tidal submergence and selection
of the spectral bands could enhance the vegetation differentiation.
Airborne hyperspectral imagery was selected for the present study
as it provides high spectral, spatial, and radiometric resolutionwith
high signal-to-noise ratio (Dekker et al., 2006). Data were acquired
with a CASI sensor, which is a push-broom imager capable of con-
figurable image collection in visible and near-infrared wavelength
regions (i.e. limits of the spectral bands are programmable) (Chen
et al., 1999). Airborne hyperspectral imagery has been found to
produce the highest overall accuracies in comparison to satellite
multispectral at high and moderate spatial resolution (Phinn et al.,
2008). Airborne remote sensing has been also found to overcome
the spatial limitations inherent in conventional satellite sensors for
accurate monitoring of small-scale dynamics (Dekker et al., 2006).
Furthermore, hyperspectral airborne sensor data provide signifi-
cantly more biological information than conventional spaceborne
sensors and is a geometrically accurate, cost-effective alternative to
aerial photography (Mumby et al., 1997).

Although presenting such a wide range of advantages, more
investigation is still needed to evaluate the discrimination potential
of several estuarine vegetation species (such as Z. noltii) either from
space sensors or airborne hyperspectral imagery (Dehouck et al.,
2012). Thus, this research aims to assess the capability of hyper-
spectral airborne imagery acquired with compact airborne spec-
trographic imager (CASI) to discriminate and map estuarine
habitats, with special focus on Z. noltii seagrass meadows. This
contribution will also provide a baseline mapping for monitoring
the wetland, saltmarshes and mudflats communities of the region
and the methods presented might be applied to other estuaries
where Z. noltii meadows occur.

2. Material and methods

2.1. Study area

The selected study area (Oka estuary, Basque Country, Spain,
Fig. 1) covers an area of 10.27 km2, being 86% intertidal area (Borja
et al., 2006) and encompassing the environmental conditions of
those estuaries from the Bay of Biscay coast (northern Spain and
southern France) which are classified as ‘estuaries with extensive
intertidal flats’ within the WFD (2000/60/EC). The large intertidal
flats of this estuary are characterised by Z. noltii seagrass meadows
(Valle et al., 2011) and associated macroalgae (Ulva sp. and Graci-
laria sp.). Particularly on the Basque coast (Fig. 1), Z. noltii is the only
occurring seagrass species and has been recently listed as an en-
dangered species within the Catalogue of Threatened Species in the
Basque Country (BOPV, 2011). Its best preserved and largest Z. noltii
meadows are located in this estuary, hosting up to 86.9% of total
seagrass coverage in the region (Garmendia et al., 2013). The upper
tidal levels of the Oka estuary are occupied by coastal saltmarshes
formed by halophytic plant communities (Chust et al., 2010). These
intertidal mud and sand flats constitute valuable habitats regarding
to biodiversity and ecosystem functioning, since they are critical
breeding and nesting habitats for birds and fish, they act as water
filtering systems and they enhance the stability of estuarine sub-
strata (R€onnb€ack et al., 2007).

This estuary is one of the most biologically diverse and best
conserved of the region, together with the Bidasoa estuary (Borja
et al., 2004) (Fig. 1). Therefore, it is included under a wide range
of national and international protection and conservation frame-
works; and, consequently, it has been investigated extensively
(Castro et al., 2004). Chust et al. (2010) performed an assessment of
the classification of 22 habitats along the subtidal, intertidal and
supralittoral zone of this estuary using Light Detection And
Ranging (LiDAR) topographic and bathymetric data acquired in
2008. Due to the high morphodynamism inherent in estuarine
habitats between the date of acquisition for the LiDAR data (i.e. in
2008) and CASI (i.e. in 2012), especially in sandy areas in the upper
estuary, the digital elevation model was included in the present
study.

2.2. Remote sensing data

The CASI sensor was configured to acquire 25 selected bands
characterised by the same spectral width (Table 1) at 2 m GSD
(Ground Sampling Distance). Selection of the spectral bands was
adjusted for species discrimination based on the spectral signature
of Z. noltii meadows, associated macroalgae and coastal salt-
marshes (Fyfe, 2003; Dekker et al., 2005; Costa et al., 2007;
Thorhaug et al., 2007; Jollineau and Howarth, 2008; Phinn et al.,
2008). This selection is likely to optimize the vegetation differen-
tiation (Dekker et al., 2006).

Airborne imagery was collected on July 3rd, 2012 under clear
sky conditions and the lowest tide level (1.05 m), using the
hyperspectral imager CASI 550 property of the Institut Cartogr�afic i
Geol�ogic de Catalunya (ICGC). The flight was planned in early
summer for climatological reasons and also to benefit of well-
developed intertidal plant and macroalgae canopies. The imagery
was acquired in the solar plane in order to minimize the sunlight
intrusion, at a velocity of 121 knots and an altitude of 1495m, so the
40.4� CASI field of view resulted in a nominal swath width of 1.1 km
(2 m by 550 pixels). The aircraft flew 22 individual flight lines
which were mosaicked by a feathering technique of 2 pixels
(weighted mean of overlapped pixels).

The image processing included radiometric (Babey and Soffe,
1992), geometric (Colomina et al., 1995; Alamús et al., 1999) and
atmospheric (Martínez et al., 2006) corrections. The overall geo-
metric accuracy assessment of the acquired imagerywas performed
by the ICGC, obtaining an RMSE (Root Mean Square Error) smaller
than the GSD (Light, 1986). However, with the aim to detect bands
with high radiometric differences from one individual scene



Fig. 1. The Basque coast within the SE Bay of Biscay. Map showing the 12 main estuarine ecosystems of the coast. Oka estuary (43� 220 N, 2� 400 W) highlighted within a rectangle.

Table 1
Preprogrammed band set configuration of Compact Airborne Spectrographic Imager
(CASI) sensor for data acquisition.

Band Centre (nm) Width (nm) Start (nm) End (nm) Description

1 411.54 9.46 416.27 406.81 Blue
2 432.33 9.44 437.05 427.61 Blue
3 488.88 9.41 493.59 484.18 Blue
4 511.47 9.41 516.17 506.76 Green
5 535.92 9.41 540.62 531.22 Green
6 550.97 9.41 555.67 546.27 Green peak
7 560.38 9.41 565.08 555.67 Green
8 571.67 9.41 576.37 566.96 Green
9 582.96 9.41 587.67 578.25 Yellow
10 596.14 9.42 600.85 591.43 Orange
11 614.99 9.43 619.71 610.28 Orange
12 630.08 9.44 634.8 625.37 Red
13 645.19 9.45 649.92 640.47 Red
14 667.89 9.47 672.63 663.16 Red
15 679.26 9.48 684 674.52 Red
16 694.45 9.5 699.19 689.7 Red edge
17 705.85 9.51 710.6 701.09 Red edge
18 719.17 9.53 723.94 714.41 Red edge
19 736.34 9.55 741.12 731.57 Red edge
20 747.81 9.57 752.6 743.03 Red edge
21 784.27 9.63 789.09 779.46 Near-infrared
22 811.29 9.67 816.13 806.46 Near-infrared
23 857.96 9.77 862.84 853.07 Near-infrared
24 899.19 9.87 904.12 894.26 Near-infrared
25 948.83 9.99 953.83 943.84 Near-infrared
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(corresponding to a flight-line) to another, composites of 3 bands
were visualised after image correction. These radiometric differ-
ences between neighboring images are related to the different
observation angles of the overlapping areas and the non-lambertian
properties of the covers, especially thewater, causing artifacts in the
final mosaic, more accentuated for some specific bands.
2.3. Field measurements

2.3.1. Regions of interest
Ground-truth sampling was carried out concurrently with the

remote sensing campaign to provide field reference data for image
classification. In addition to this specific sampling, data from a
ground survey conducted by Chust et al. (2010) were also consid-
ered for image classification training and validation. The sampling
consisted of delimiting several areas (regions of interest, ROIs
hereafter) for each defined habitat class along supralittoral, inter-
tidal and subtidal zones (Table 2 and Figs. A.1 and A.2).

The ROIs were as homogenous as possible according to sub-
stratum type, vegetation cover, macroalgae and plant species.
Covered areas consisted in 6 � 6 m polygons for all habitat classes
except for Z. noltii habitat classes which covered an area of 4 � 4 m
due to the patchy composition of the meadows of this species. The
location of each ROI (114 within intertidal habitats and 32 within
Z. noltii meadows) was determined with a high precision GPS
deliver Trimble R6 GNSS system (maximum horizontal position
error of 1.5 cm and maximum vertical position error of 2 cm).
Digital photographs of each ROI were captured from a 4 m height
pole during the sampling (Figs. A.1 and A.2). Ground-truth data
were randomly divided into two independent data sets (Table 2),
one to calculate the statistics needed for the classification (i.e.
training sites) and the other to evaluate the reliability of the clas-
sifications (i.e. validation sites).
2.3.2. Seagrass meadows: cover and spectral signature
Simultaneously to the ground-truth sampling, data on Z. noltii

shoot density were also acquired along a percent cover gradient
(0e25%; 25e50%; 50e75%; 75e100%) in order to obtain detailed
data on Z. noltii spectral response and enable the application of a
Normalized Difference Vegetation Index (NDVIz see below). Thus,
the ROIs corresponding to Z. noltii habitat class included the in-
formation on the patch cover and on the shoot density. Shoot
density was sampled deploying a 25 � 25 cm frame in the middle
part of the ROI (where the location was acquired) and counting the
number of shoots within the frame. Digital photographs of each
sample point were captured from 1 m height.

Based on the photographs we compared the percent cover
estimated by visu (i.e. the percent of substratum covered by Z. noltii
when viewed directly from above) to that estimated by a super-
vised classification performed in ENVI image analysis software
(ENVI 4.2) using the maximum likelihood method (ML, explained
further in this subsection). Photographs covered an area of
50 � 50 cm. The percent cover estimates derived from the ML



Table 2
Description of the classes defined for habitat classification (see also Figs. A.1 and A.2). ROIs: Regions of interest.

Description Training ROIS Validation ROIs

Vegetated dunes Embrionary, secondary, tertiary and artificial dunes with fine sand dominated by
psammophilic vegetation such as Ammophila arenaria (subsp. australis), Euphorbia
paralias, Elymus farctus (susp. boreali-atlanticus) and Calystegia soldanella.

2931 pixels 10.55 ha 1354 pixels 4.87 ha

Phragmites australis High vegetation zone (upper saltmarsh) which suffers weak tidal influence, flooded only
during high spring tides. Practically mono-specific formation dominated by Phragmites
australis.

96 pixels 0.35 ha 92 pixels 0.33 ha

Saltmarshes Placed in the inner part of the estuary of low hydrodynamism. Middle vegetation zone
(low-intermediate saltmarsh), flooded twice a day, and dominated by vascular
halophilic plants such as Juncus maritimus,Halimione portulacoides, Sarcocornia fruticosa,
Sarcocornia perennis, Salicornia dolichostachya, Salicornia lutescens.

327 pixels 1.18 ha 345 pixels 1.24 ha

Green macroalgae Low and mid intertidal muddy shore in the middle and upper part of the estuary
dominated by the macroalgae Ulva clathrata and Ulva rigida.

81 pixels 0.29 ha 80 pixels 0.29 ha

Gracilaria sp. with Ulva sp. Low and mid intertidal muddy shore in the middle and upper part of the estuary
dominated by the macroalgae Gracilaria sp. mixed with Ulva rigida and Ulva compressa.
With small patches of Chaetomorpha linum and Chaetomorpha ligustica.

48 pixels 0.17 ha 48 pixels 0.17 ha

Vegetated mudflats Low and mid intertidal muddy shore in the middle and upper part of the estuary
partially vegetated by macroalgae (Vaucheria spp.) and microalgae.

64 pixels 0.23 ha 48 pixels 0.17 ha

Zostera noltii 20%e55% Low dense (20%e55% of surface cover) marine seagrass beds of Z. noltii on sandy and
muddy substrates at intertidal zone.

31 pixels 0.05 ha 25 pixels 0.04 ha

Zostera noltii > 55% High dense (larger than 55% of surface cover) marine seagrass beds of Z. noltii on sandy
and muddy substrates at intertidal zone.

26 pixels 0.04 ha 27 pixels 0.04 ha

Infralitoral sand flats Sand shores placed in the mid-low estuary exclusively constituted by fine sand,
subjected to tidal submergence.

6212 pixels 22.36 ha 41 pixels 0.15 ha

Supralitoral sand flats Sand shores placed in the upper estuary exclusively constituted by fine sand and shell
fragments.

4708 pixels 16.95 ha 500 pixels 1.80 ha

Water mass Water channels and sea water. 2634 pixels 9.48 ha 2611 pixels 9.40 ha
Mudflats Fine sediment (sandy mud) with low organic matter content. Low and mid intertidal

muddy shore in the middle and upper part of the estuary, subjected to tidal
submergence.

146 pixels 0.53 ha 66 pixels 0.24 ha

Riparian woodland Riparian woodland associated to rivers placed around wetlands in soils rich in alluvial
deposits. Dominance of Alnus glutinosa, Tamarix gallica, Fraxinus excelsior and Salix sp.

1329 pixels 4.78 ha 944 pixels 3.40 ha

Pastures Traditionally drained areas to be used for agricultural purposes and pasture land. 7144 pixels 25.72 ha 3681 pixels 13.25 ha
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classification were used to define the habitat class of Z. noltii to
which each sampled ROI belong to (i.e. low dense or high dense).

2.3.3. Spectral signatures
In addition to the field sampling carried out the same day of the

flight, in situ reflectance measurements of the different estuarine
habitats which were selected for classification (Table 2) were also
undertaken one week after the imagery acquisition using TriOS
radiance/irradiance field sensors. Measurements were conducted
by GEO-Transfert (University of Bordeaux) in the framework of the
SYNIHAL project. The radiance of each habitat class was measured
at nadir. Reflectance for each habitat was estimated as the ratio of
the radiance of the habitat surface, to the incident downwelling
irradiance. The spectral reflectance measurements were analysed
in order to identify changes in the spectrum between the habitat
classes and were compared to that spectrum extracted from the
imagery in the ROIs.

2.4. Normalized difference vegetation index for Z. noltii

Spectral responses of Z. noltii at different percent covers were
extracted from the CASI imagery in the sampled ROIs. In order to
relate the spectral response of Z. noltii to its density and surface
cover, a Normalized Difference Vegetation Index (NDVI) was
calculated combining the reflectance in the red and infrared re-
gions (Rouse et al., 1973; Tucker, 1979). NDVI is the most widely
used index to assess green biomass (Lillesand and Kiefer, 2000). The
wavelengths selected to calculate the NDVI for Z. noltii (NDVIz) were
determined based on the changes in the spectral response of
Z. noltii in reference to the percent cover. A non-linear regression
between the NDVIz and the Z. noltii cover was subsequently
calculated following Bargain et al. (2012). The data were modeled
by the exponential function:
NDVIZ ¼ aþ b
�
1� e�c*cover

�
(1)

where a is the intercept, b is the asymptotic value (¼NDVIzmax) and
c the slope value.
2.5. Habitat classification

Final corrected images from the CASI and the ground-truth data
were imported into the ENVI image analysis software (ENVI 4.2) to
perform the image classification using a supervised classification
approach. Supervised classification was considered to be the most
appropriate approach versus non-supervised approaches, since the
study area was well-known and accessible allowing field sampling
for ROIs acquisition (Lillesand and Kiefer, 2000). Amongst the
different supervised classification approaches, the widely used ML
supervised classification approach method was selected (Jensen,
2007). This method computes the probability of each pixel to
belong to one of the predefined habitat classes and assigns it to the
class to which it most likely belongs. ML algorithm considers the
variability in each ROI and assumes that training data statistics in
each band for each class are normally distributed (Peneva et al.,
2008).

In order to achieve the best classification, the acquired spectral
bands were combined in different groups and their accuracy was
assessed. Firstly, a classification was computed by introducing all
acquired spectral bands except the bands 1 and 2 (excluded in order
to minimize artifacts derived from radiometric differences between
swaths). This classification based on 23 bands was compared to: (i)
a combination of three visible bands (bands 3, 7 and 12) conven-
tionally used for photo-interpretation; (ii) a combination of three
visible bands (bands 3, 7 and 12) plus a band in the near-infrared
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(band 22); (iii) a combination of six visible bands (bands 3, 7, 14, 15,
18 and 20) plus a band in the near-infrared (band 22); (iv) a com-
bination of nine visible bands (bands 3, 4, 7, 12, 14, 15, 16, 18 and 20)
plus a band in the near-infrared (band 22), and (v) a combination of
eleven visible bands (bands 4, 5, 7, 8,13,14,15,17,18,19 and 20) plus
four bands in the near-infrared (bands 21, 22, 23 and 24). Band
combinations were selected based on the differences in the spectral
response between habitat classes (Figs. 2 and 3).

The classification accuracy of each combination of bands was
assessed on the basis of the accuracy measurements derived from
the confusion matrices (Stehman, 1997; Foody, 2002). A confusion
matrix represents a cross-tabulation of the mapped class against
the ground-truth data (Congalton, 1991). The per class accuracy
indices were: (i) the producer accuracy (PA), which indicates the
probability of a certain category defined by the reference data to be
classified as the same category by the map; and (ii) the user ac-
curacy (UA), which shows the probability of an area classified as a
certain category by the map to be defined as the same class by the
reference data. The overall accuracy measurements used were: the
mean producer accuracy (MPA; i.e. the mean of all PA), the mean
user accuracy (MUA; i.e. the mean of all UA), and the Kappa coef-
ficient of agreement (Stehman, 1997). The Kappa coefficient of
agreement value ranges from 1 to �1, where 1 means full agree-
ment between habitat classification and validation, �1 indicates
full disagreement, and 0 indicates that observed agreement is
random. This index accommodates for the effects of chance
agreement (Foody, 2002), taking into account that the classes may
differ in size. In order to evaluate the capability of the hyperspectral
imagery to discriminate and map Z. noltii meadows, the most ac-
curate band combination was compared to a recent GPS-based
cartography of the same year undertaken by Garmendia et al.
(2013).
Fig. 2. Reflectance spectra of the habitats within supralittoral and the intertidal z
3. Results

3.1. Spectral signatures

Spectral reflectance curves were analysed for the habitats
selected with classification purposes (Fig 2). The spectral response
of the habitats within sandy substratum (vegetated dunes and
supralittoral sand flats) presented high reflectance in the visible
part (from 380 nm to 750 nm) (Fig. 2). This is related to the low
water and organic content of the sandy sediment (Bargain et al.,
2012). Green plant species had significantly lower reflectance in
the visible part of the spectrum due to the absorption by photo-
synthetic and accessory pigments, especially in the range from 400
to 500 nm and around the 675 nm. The spectrum from green
macroalgae and saltmarshes (Halimione portulacoides and Sarco-
cornia sp.) showed higher reflectance in the visible part than Gra-
cilaria sp. and Juncus maritimus (Fig. 2).

The recorded spectrum within Z. noltii meadows above muddy
sand, showed high reflectance in the visible part and low absorp-
tion around 675 nm (Fig. 2), likely related to the background sandy
sediment. Deeper absorption in the visible part and sharper rise in
the near-infrared was recorded in the sampling points where the
cover of Z. noltii was total (Fig. 2).

Once the in situ measurements of the spectral response were
analysed, spectral signatures of each defined habitat class were
extracted from the imagery acquired with the CASI using the ROIs
(Fig. 3). The extracted spectra allowed identifying the wavelengths
for which the habitats can be discriminated. Spectral signatures for
the different ROIs along the Z. noltii cover gradient were also
extracted from the CASI imagery (Fig. 3).

In accordance with the spectra from the in situ reflectance
measurements (Fig 3) lower radiance was detected in all the
one and of Zostera noltii at different covers and background sediment types.



Fig. 3. Spectral signatures of intertidal habitats and for the different Regions Of Interest (ROIs) along the Zostera noltii cover gradient (in %) extracted from the Compact Airborne
Spectrographic Imager (CASI) imagery using the ground-truth data.

Fig. 4. Non-linear regression model, estimated by exponential function between the
Normalized Difference Vegetation Index (NDVIz) and the Zostera noltii cover.
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vegetated ROIs than in the unvegetated ones (Fig. 3). Around the
675 nmwavelength, the major absorption values were observed for
the ROIs where the percent cover of Z. noltii was higher than 84%.
Those ROIs with the highest cover showed the highest radiance in
the near-infrared.

3.2. Normalized difference vegetation index for Z. noltii

Based on the detected changes in the spectrum, thewavelengths
679.26 nm (band 15, red) and 784.27 nm (band 21, near-infrared)
were selected to calculate the NDVIz index as:

NDVIz ¼ R 784:27 � R679:26

R784:27 þ R679:26
(2)

Subsequently the non-linear regression indicated in eq. (1) was
computed (coefficient of determination R2 ¼ 0.59) (Fig. 4). Based on
the results from the non-linear model a threshold of percent cover
was identified (55%) and two different percent cover ranges were
defined to perform the habitat classification: (i) from20 to 55%; and
(ii) higher than 55%.

An NDVIz lower than 0.25 was detected for bare sediments or
sediments with very low cover of Z. noltii (below 20%). An NDVIz
value ranging between 0.25 and 0.35 grouped the 85% of the Z. noltii
ROIs with a cover gradient between 20% and 55%. The 100% of the
Z. noltii ROIs representing dense meadows (percent cover > 55%)
presented an NDVIz greater than 0.35. The misclassification of 15%
of ROIs with a cover gradient between 20% and 55% could be related
to the background influence of the sediment, which produces high
an NDVIz value (>0.35).
3.3. Habitat classification

Comparison on different combinations of bands showed that the
classification based on 10 bands presented the highest classification
accuracy for the 14 habitats selected along the subtidal, intertidal
and supralittoral zone (Table 3). This classification provided the
highest mean producer and user accuracy and the best kappa value
(Table 3). However, overall accuracy of all tested classification was



Table 3
Accuracy assessment results for each band combination. Overall accuracy measures: Kappa; mean producer accuracy (MPA); mean user accuracy (MUA). Results per habitat
class for each band combination (in %). PA: producer accuracy, MPA per class indicates themean producer accuracy achieved by each class based on the tested classification. UA:
user accuracy, MUA per class indicates the mean user accuracy achieved by each class based on the tested classification.

3 bands 4 bands 7 bands 10 bands 15 bands 23 bands Mean accuracy
per class (%)

Kappa 0.8698 0.9808 0.9862 0.9886 0.9874 0.9838
MPA 82.58 91.59 91.39 91.88 87.53 80.68
MUA 67.09 91.16 92.36 93.26 92.9 93.75

Class PA UA PA UA PA UA PA UA PA UA PA UA MPA MUA

Vegetated dunes 97.12 96.98 99.85 99.93 99.85 99.85 99.70 99.85 99.70 99.85 99.41 99.85 99.27 99.39
Phragmites australis 82.61 16.56 88.04 87.10 85.87 95.18 89.13 90.11 80.43 94.87 69.57 98.46 82.61 80.38
Saltmarshes 92.71 83.91 95.92 88.44 96.21 91.92 96.79 94.05 97.67 95.44 99.13 88.08 96.41 90.31
Green macroalgae 88.75 22.83 95.00 98.70 92.50 96.10 95.00 97.44 100.00 89.89 98.75 86.81 95.00 81.96
Gracilaria sp. with Ulva sp. 35.42 19.77 91.67 88.00 81.25 90.70 81.25 92.86 79.17 84.44 56.25 90.00 70.84 77.63
Mudflats 96.97 69.57 98.48 94.20 100.00 95.65 100.00 97.06 100.00 97.06 100.00 91.67 99.24 90.87
Vegetated mudflats 95.83 83.64 97.92 95.92 95.83 95.83 97.92 95.92 87.50 100.00 79.17 100.00 92.36 95.22
Zostera noltii 20%e55% 60.00 33.33 68.00 60.71 76.00 59.38 72.00 62.07 52.00 54.17 20.00 62.50 58.00 55.36
Zostera noltii > 55% 44.44 22.22 55.56 68.18 55.56 71.43 55.56 78.95 29.63 88.89 7.41 100.00 41.36 71.61
Supralitoral sand flats 97.40 96.82 100.00 99.80 100.00 99.60 100.00 99.21 100.00 99.21 100.00 98.43 99.57 98.85
Water mass 87.44 98.36 100.00 99.69 100.00 99.66 100.00 99.66 100.00 99.69 100.00 99.62 97.91 99.45
Infralitoral sand flats 92.68 100.00 95.12 100.00 97.56 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.56 100.00
Riparian woodland 98.20 95.47 98.62 95.68 99.79 97.82 99.58 98.53 99.68 97.21 99.89 97.22 99.29 96.99
Pastures 86.53 99.84 98.04 99.83 98.99 99.86 99.38 99.95 99.62 99.92 99.89 99.92 97.08 99.89
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very high (kappa value > 0.98) except for the classification based on
the three bands from the visible spectrum (kappa value ¼ 0.86)
(Table 3).

Regarding the obtained accuracy values per class (or habitat
type), the best classification results were obtained for vegetated
dunes, vegetated mudflats, supralittoral sand and riparian wood-
land (Table 3). The two Z. noltii classes presented high confusion
(i.e. misclassification) in comparison to the rest of habitat classes
(Table 3). The classification based on the 23 bands was found to be
the worst: not only Z. noltii classes resulted in being misclassified
but also Phragmites australis, Gracilaria sp. with Ulva sp., and
vegetated mudflats (Table 3). In the remaining classifications more
confusion was observed in comparison to the map obtained by 10
bands classification. Thus, the most accurate classification (classi-
fication based on 10 bands acquired with CASI) was selected and
Z. noltii classes were merged. Considering the combined class of
Z. noltii, the producer accuracy increased up to 90.3%, being the user
accuracy 97.9%.

The final map (Fig. 5), based on 10 bands acquired with CASI,
highly discriminated all estuarine habitat classes. Saltmarshes,
vegetated mudflats and green macroalgae presented higher
discrimination accuracy than 95%. Whereas, Phragmites australis
and Gracilaria sp. with Ulva sp. classes were slightly misclassified,
being the producer accuracy of 89% and 81%, respectively.

This map was subsequently compared to the recent GPS-based
cartography of the same year undertaken by Garmendia et al.
(2013). Focusing in Z. noltii meadows, the classification results
were consistent (i.e. correct shape of detected areas) with the GPS-
based cartography (Fig. 6, dark green areas). However, only 35.2% of
the GPS-mapped meadows were correctly classified using CASI
imagery. This underestimationwas likely produced due to the large
extents of seagrass meadows which are low dense within the
intertidal areas of the estuary and CASI cannot detect them (Fig. 6a,
light green areas). In estuarine habitats, in addition to the density
related classification issues, factors such as tides also affect remote
sensing results. This is the case of the area of Arketas (Fig. 6b)
where the largest meadow was not detected, since it was sub-
merged during the image acquisition.

When comparing the Z. noltii classified polygons obtained by the
CASI classification to the GPS-based cartography, 47.7% of classified
polygons were detected to be Z. noltii meadows according to the
GPS-based cartography. This indicates that there was an
overestimation of Z. noltii classification, which was located mainly
along saltmarsh channels (Fig. 6, red areas). The common Z. noltii
area between the GPS-based cartography and CASI classification
was 25%.

4. Discussion

4.1. Capability of CASI sensor to map estuarine habitats

The accuracy assessment carried out in the present research
suggests that mapping has been benefited from the advantages of
hyperspectral data since accurate distribution has been achieved
for almost all the habitat classes. The highest and most consistent
mean accuracy values were recorded for the 10 band combination
(MPA 91.8% and MUA 93.7%). These results were corroborated by
the kappa coefficient of agreement (0.98). The classification using
almost the full set of configured CASI bands (i.e. including all the
spectral bands except for bands 1 and 2) was not found to be the
most accurate classification. Overall accuracy measurements were
not as consistent as in the classification based on the 10 bands
combination. The lowaccuracy values obtained for the combination
of the three visible bands conventionally used for photo-
interpretation, indicates that hyperspectral data are more
adequate for image classification than aerial visible photography.
Chust et al. (2008) also found high percentage of classification error
when only conventional visible bands were used in the classifica-
tion. Our results support the commonly reported importance of
infrared wavelengths for estuarine species classification (Costa
et al., 2007; Chust et al., 2008, 2010; Phinn et al., 2008). Thus,
despite the high cost of the hyperspectral data acquisition and the
complex data processing, CASI imagery provides a wider range of
information (i.e. several habitats) and it can cover large and inac-
cessible areas, allowing the acquisition of comparable time-series
information.

4.2. Classification of Z. noltii meadows

Z. noltii class distribution was found to be accurate based on the
validation results but when comparing to the GPS-based cartog-
raphy from Garmendia et al. (2013) a low agreement was found
mainly because low dense and submerged areas of Z. noltiiwere not
detected by CASI. The main reason of these contrasting results is



Fig. 5. a) Oka estuary (RGB: bands 23, 16, 6) and classified image based on 10 bands; b) zoom to San Cristobal and Kanala intertidal areas.

Fig. 6. Zostera noltii distribution corresponding to the combination of the GPS-based cartography from Garmendia et al. (2013) and the classification based on 10 bands of the
Compact Airborne Spectrographic Imager (CASI). a) San Cristobal and Kanala intertidal areas; b) Arketas zone. In dark green, agreement areas (i.e. shared polygons GPS and CASI); in
light green, areas mapped only by GPS-based cartography (i.e. polygons mapped using GPS but not detected by CASI classification); in red, areas only classified by CASI classification
(i.e. polygons produced by CASI classification where there is not Z. noltii according to GPS-based cartography). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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that overall accuracy values were based on the validation sites
which were undertaken within homogeneous patches of Z. noltii
not affected by the edge. Hence, the classification results must be
considered with caution, suggesting that reliable mapping of
Z. noltii using CASI sensor must be restricted to moderate and high
dense meadows. Krause-Jensen et al. (2004) already indicated that
meadows of low density may not always be detected and the
sensitivity of the mapping is therefore higher for dense meadows
than for sparsely vegetated meadows. The GPS-based cartography
of Z. noltii meadows carried out by Garmendia et al. (2013) at the
same period, allowed us to assess this sensitivity and to detect the
constraints of the CASI method when classifying seagrass beds. The
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GPS-based cartography of Z. noltii meadows undertaken by
Garmendia et al. (2013), although requiring longer sampling time,
was less expensive, more reliable and the data processing was
faster. However, this method is only appropriate for small and
accessible estuaries and for a low number of target species. On the
contrary, as mentioned above, despite the higher cost of the
hyperspectral data acquisition and the more complex data pro-
cessing, CASI imagery provides a wider range of information (i.e.
several habitats) and it can cover large and inaccessible areas,
allowing the acquisition of comparable time-series information.
Thus, rather than replacement, the integration of both techniques
should be considered in order to complement estuarine habitat
monitoring (Lyons et al., 2013).

4.3. Normalized difference vegetation index for Z. noltii

In the present research we have defined an NDVIz which was
applied to determine a percent cover threshold in the basis of
which two habitat classes of the species were determined. Similar
NDVIs have been applied to detect changes in the distribution of
Z. noltii seagrass (Barill�e et al., 2010; Bargain et al., 2013) suggesting
that the acquired CASI imagery could be used to develop further
research on the applicability of the index for mapping the per-
centage of species cover. As pointed by Bargain et al. (2012),
vegetation indices for seagrass mapping must be applied with
caution, due to their high sensibility to the background influences
of sediment. That influence has been recorded in this research since
some ROIs with lower percent cover of Z. noltii presented high
NDVIz values.

The specific sampling of Z. noltii meadows allowed to assess the
changes on the spectral response of the species at different percent
covers. The obtained results were in accordance with Bargain et al.
(2012) where an orderly decrease of reflectance in the visible part
of the spectrum, with deeper absorption at 675 nm and a shaper
increase in the near-infrared plateau was observed with a biomass
increase. As pointed out by Dekker et al. (2006), a spectral library
collection of estuarine habitats should be very useful supporting
the field of hyperspectral remote sensing in coastal habitats.

4.4. Concluding remarks and perspectives

1 Airborne hyperspectral imagery is useful for mapping estuarine
habitats, although accurate Z. noltii classification has been found
to be restricted to moderate and high dense meadows. In this
sense, of note is the importance of elevation and topographical
features in habitat classification pointed out by Chust et al.
(2010). Considering that the Z. noltii niche is strongly associ-
ated with a narrow range of terrain elevation and the high
dependence of the estuarine habitats to the terrain elevation,
the integration of digital terrain models with the hyperspectral
imagery would probably enhance the map classification accu-
racy. Therefore, the simultaneous acquisition from two airborne
sensors (CASI and LiDAR) might strongly improve habitat
cartography and environmental monitoring as suggested by
Collin et al. (2010).

2 The vegetation index NDVIz is capable of discriminating be-
tween sparsely vegetated and dense Z. noltii beds and thus, can
be further applied to CASI imagery in order to map the per-
centage of species cover in those areas where the species is
present.

3 Airborne hypespectral data provide relevant information for
biodiversity monitoring at spatial and temporal scales. Derived
information on habitat distribution could also be coupled with
environmental data in order to model the suitable habitat of
each habitat class and future projections under climate change
scenarios could be undertaken (Valle et al., 2014). Thus, ob-
tained data could provide key information to be used in sup-
porting the implementation of environmental legislation,
protection and conservation of coastal habitats, and to establish
adaptation plans to face climate change impacts.
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