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Intertidal seagrasses show high variability in their extent and location, with local extinctions and (re-)colo-
nizations being inherent in their population dynamics. Suitable habitats are identified usually using Species
Distribution Models (SDM), based upon the overall distribution of the species; thus, accounting solely for
spatial variability. To include temporal effects caused by large interannual variability, we constructed SDMs
for different combinations and fusions of yearly distribution data. The main objectives were to: (i) assess
the spatio-temporal dynamics of an intertidal seagrass bed of Zostera marina; (ii) select the most accurate
SDM techniques to model different temporal distribution data subsets of the species; (iii) assess the relative
importance of the environmental variables for each data subset; and (iv) evaluate the accuracy of the models
to predict species conservation areas, addressing implications for management. To address these objectives, a
time series of 14-year distribution data of Zostera marina in the Ems estuary (The Netherlands) was used to
build different data subsets: (1) total presence area; (2) a conservative estimate of the total presence area,
defined as the area which had been occupied during at least 4 years; (3) core area, defined as the area
which had been occupied during at least 2/3 of the total period; and (4–6) three random selections of
monitoring years. On average, colonized and disappeared areas of the species in the Ems estuary showed
remarkably similar transition probabilities of 12.7% and 12.9%, respectively. SDMs based upon machine-
learning methods (Boosted Regression Trees and Random Forest) outperformed regression-based methods.
Current velocity and wave exposure were the most important variables predicting the species presence for
widely distributed data. Depth and sea floor slope were relevant to predict conservative presence area and
core area. It is concluded that, the fusion of the spatial distribution data from four monitoring years could
be enough to establish an accurate habitat suitability model of Zostera marina in the Ems estuary. The meth-
odology presented offers a promising tool for selecting realistic conservation areas for those species that
show high population dynamics, such as many estuarine and coastal species.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Seagrasses play an important role in maintaining a diverse and
healthy coastal ecosystem (Björk et al., 2008) and providingmany envi-
ronmental functions, which lead seagrass ecosystems to be amongst the
PA, total presence area; CPA,
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most valuable ecosystems in theworld (Costanza et al., 1997). However,
their habitat is being fragmented and lost worldwide (Duarte, 2002;
Hughes et al., 2009), with rates of decline accelerating in recent years
(Waycott et al., 2009), and seagrass beds disappearing completely in
some areas (Green and Short, 2003; Kirkman, 1997; Short et al., 2006).
In contrast to this global crisis of seagrass ecosystems, recent researches
have detected a recovery of mixed intertidal beds of Zostera marina and
Zostera noltii in the North Frisian Wadden Sea (Germany) (Dolch et al.,
2012), and a steady and linear increase in Z. noltiimeadow areas within
Bourgneuf Bay (France) (Barillé et al., 2010). These encouraging results
reveal the potential for seagrass recovery, highlighting the importance
of the assignment of suitable areas to permit the conservation of these
valuable ecosystems.
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Seagrass meadows are highly dynamic ecosystems, maintained
through the continuous recruitment of new clones, in combination
with the growth and turnover of the shoots (den Hartog, 1971;
Duarte et al., 2006). In semi-annual populations, seed production, dis-
persal, germination and seedling survival additionally determine the
bed dynamics. In particular, the intertidal habitat-forming species,
such as the semi-annual flexible type of Z. marina, but also the peren-
nial Z. noltii, have high inter annual variability in extent and location,
with local extinction and (re-)colonizations being part of their life strat-
egy (Erftemeijer, 2005; van Katwijk et al., 2006, 2009). Consequently,
not all suitable habitats of the species are occupied every year. However,
these uninhabited, but suitable, areas are important for seagrasses to
survive in the long-term, by providing refuge areas to overcome tempo-
rally unsuitable local circumstances elsewhere, for example, to over-
come weather conditions such as the presence of ice. Loss of these
unoccupied habitats would decrease the possibilities for seagrass sur-
vival, enhancing ultimately the risk of extinction. Even if Zostera species
and their habitats are protected under one or more environmental
frameworks at international, European and national scales (Bos et al.,
2005; Valle et al., 2011), the protection measures are based often
upon the actual distribution of the species in a particular monitored
year, rather than the overall available habitat. In this way, human activ-
ities (such as: bottom trawling; shellfish and worm collecting; and rec-
reational activities) remain permitted around the seagrass beds. Such
activities may lead to damage of the unoccupied habitat of these dy-
namic populations (Cunha et al., 2012).

Areas that are occupied frequently by seagrass (core areas, hereaf-
ter) can be distinguished easily when a time-series of monitoring data
is available (Dolch et al., 2012). When seagrass monitoring is infre-
quent, it is likely to incorporate the core areas, but likely also to exclude
large areas that are occupied only occasionally; thereby, underesti-
mating the overall seagrass habitat. If only core areas are protected, a
large part of the total distribution could be lost, e.g. in The Netherlands,
this amounts to 91% ± 8.59% (Table 1). Therefore, defining the entire
potential habitat area needed to maximally protect a species with
high temporal dynamics requires frequent monitoring of its distribu-
tion. As the seagrass monitoring is laborious and expensive, there is a
need for other approaches to be adopted for the delimitation of the con-
servation areas. One approach could be the use of species distribution
models (sensu Guisan and Zimmermann, 2000; SDM, hereafter), to
identify suitable seagrass habitats.

In recent years, several techniques to build SDMs have been devel-
oped (Elith and Leathwick, 2009; Franklin, 2009; Guisan and Thuiller,
2005). SDMs are based commonly on the overall distribution of a spe-
cies, without considering if there are ecological differences between fre-
quently and occasionally occupied areas. Likewise, distribution patterns
Table 1
Occupied area, core area and potential loss of 14 seagrass beds in The Netherlands. Occupied
with an occupation of equal or greater than 66% of the monitored years. Potential seagrass b
Transport, Water Management and Public Works (analyses: Annette Wielemaker)).

Water body Species Location Period Moni

Wadden Sea Z. noltii Groningse kwelders 1991–2008 13
Tersch-Oosterend 1991–2008 14

Z. marina Ems estuary 1991–2008 14
Tersch-haven 1991–2001 7

Eastern Scheldt Z. noltii Dortsman 1990–2009 10
Kats 1991–2008 10
Kattendijke 1990–2009 8
Krabbekreek Noord 1990–2009 12
Sint Annaland 1990–2009 12
Mastgat 1990–2009 11
Viane 1992–2008 8
Zandkreek Noord 1990–2009 18
Zandkreek Zuid 1990–2009 18
Zuid Beveland 1990–2009 11
of highly dynamic species (such as seagrasses) may vary considerably
between different years of monitoring. In some years, seagrasses may
spread to areas which are normally not occupied. Incorporation of
such incidental occurrences in a SDM is likely to decreases the robust-
ness of the model. On the other hand, seagrass beds could be damaged
or represent only core areas, because of insufficient protection. Models
based upon these frequently occupied areasmight represent only a part
of the total area suitable for the species. Therefore, in the research devel-
oped here, different subsets of a time-series of monitoring data were
used to build SDMs for a seagrass species. Using a 14-year time-series
of distribution data of Z. marina in the Ems estuary (The Netherlands),
which allows addressing spatio-temporal variability in the modelling,
the aims of this research are to: (i) assess the spatio-temporal dynamics
of an intertidal seagrass bed of Zostera marina; (ii) select the most
accurate SDM techniques to model different temporal distribution
data subsets of the species; (iii) assess the relative importance of the
environmental variables for each data subset; and (iv) evaluate the
accuracy of themodels to predict species conservation areas, addressing
implications for management.
2. Material and methods

2.1. Study area

The Wadden Sea (Fig. 1a) is one of the world's largest international
marine wetland reserves (approx. 6000 km2), bordering the coasts of
The Netherlands, Germany and Denmark. Due to its high ecological im-
portance, it is under the protection and conservation frameworks of
three main European Directives: the Habitat Directive (92/43/EEC),
the Directive on the Conservation of Wild Birds (2009/147/EC); and
the Water Framework Directive (2000/60/EC).

The Ems estuary (Fig. 1b), located on the border between The
Netherlands and Germany, is one of the most important estuaries
intersecting the Dutch Wadden Sea (de Jonge, 2000). The biological
and physical processes affecting this estuary have been investigated
extensively (Baretta and Ruardij, 1988; de Jonge, 1992a, 1992b,
2000). Dominant physical processes are the tides (range and cur-
rents), wind-generated waves, and freshwater inflow from the Ems
river and the Westerwoldse Aa river (Fig. 1) (Talke and de Swart,
2006). The availability of a time-series of 14 years on species' distri-
bution and the relatively stable presence of Z. marina populations in
this area (Bos et al., 2005) during the studied period, together with
environmental data availability, were the main reasons to select the
intertidal area of this estuary as the study area (Fig. 1c) to undertake
this research.
area is the total area occupied during any of the monitoring years. Core areas are areas
ed loss is the potential loss if only core areas are protected (data courtesy: Ministry of

toring years Occupied area (ha) Core areas (ha) Potential loss (%)

115.94 14.05 88
50.22 8.25 84

251.24 15.7 94
25.13 1.71 93
58.08 15.09 74
13.94 2.57 82
13.89 2.08 85
36.42 0.29 99
3.35 0 100
4.6 0 100

19.37 1.22 94
34.55 0.1 100
37.52 7.63 80
34.37 1.18 97



Fig. 1. (a) Map of the Wadden Sea (North-West Europe) with inset (b) of the Ems estuary and (c) the study area.
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2.2. Data collection and processing

2.2.1. Species presence data
The seagrass beds in the Wadden Sea have been monitored on a

yearly basis since the mid-1990s, by the Directorate-general for Public
Works, under the framework of the biological monitoring programme
Fig. 2. Distribution map of Zostera marina in the Ems estuary showing the frequency
of the Dutch Government. Monitoring has been carried out based upon
both aerial photographs and ground surveys. In the ground surveys
the entire potential seagrass area was visited; thus, the mapping was
as complete as possible. Monitored data of Z. marina in the Ems estuary
from 1995 to 2009 (with the exception of 1998, which was not moni-
tored) were used to determine the species' frequency of occurrence by
of occurrence (number of years) within the period 1995–2009 (excluding 1998).

image of Fig.�2
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overlaying the yearly spatial distributionmaps (Fig. 2). Based on this fre-
quency map, six different presence data subsets were built: (1) total
presence area (TPA), as represented by an occupation frequency greater
than 0; (2) a conservative estimate of the total presence area (hereafter:
Conservative Presence Area, CPA), defined as the area which had been
occupied over at least 4 years, thus excluding occasionally occupied
areas; (3) core area, defined as the areawhich hadbeen occupied during
at least 2/3 of the total period (i.e. at least 9 years); and (4–6) three ran-
dom selections of four monitoring years. Using four monitoring years
enabled an assessment of whether low-frequency monitoring is suffi-
cient to establish a representative SDM, as seagrassmonitoring is expen-
sive and less intensive monitoring could reduce the costs.
2.2.2. Environmental data
Environmental variables that are known to affect the species' dis-

tribution (Bos et al., 2005) were provided by the Ministry of Trans-
port, Water Management and Public Works. The variables included
current velocity, wave exposure, depth, sea floor slope, and salinity
in the water column (Table 2). Current velocity and wave exposure
maps were created using a coastal zone model for currents (Simulat-
ing WAves Nearshore, SWAN), assuming dominant wind directions
and moderate storm velocities (Bos et al., 2005). Depth data were
obtained from the bathymetric map of the Wadden Sea (2002, Minis-
try of Transport, Water Management and Public Works). Sea floor
slope was derived from depth, using the Spatial Analyst 9.3 extension
from ArcGis 9.2 software (ESRI ®). Salinity was derived from a 2D
model, based on water movements and quality, and local freshwater
sources (Jager and Bartels, 2002). All of the variables were masked
to the same extent and exported as raster-based grid files with the
same spatial resolution (50 m).
Table 3
Overview of techniques applied to establish species distribution models of the different
presence data subsets of Zostera marina in the Ems estuary.

Group of SDMs Id Technique Platform References

Machine learning
methods

1 Boosted Regression
Trees

R package:
dismo

Hijmans et al.,
2012

2 MaxEnt MaxEnt Phillips et al.,
2.3. Analysis of spatio-temporal dynamics

Spatio-temporal dynamics (cycles of decline and recovery) of the
species were analyzed by computing differences in vegetated area be-
tween couples of subsequent monitoring years, using ArcGIS 9.2 soft-
ware (ESRI ®). Four change classes were defined: (i) colonized (area
newly vegetated, in comparison with the preceding monitoring year);
(ii) stable (area vegetated at present, as well as during the preceding
monitoring year); (iii) disappeared (area vegetated in the preceding
monitoring year, but not in the present year); and (iv) non-occupied
(area unvegetated during both of themonitoring years). The probability
of change from state i (present or absent), to state j (present or absent),
in a time-step t was estimated as:

Pi tð Þ→j tþ1ð Þ ¼
Ni tð Þj tþ1ð Þ
∑N

ð1Þ

where Ni(t)j(t + 1) is the number of pixels at state i in year t that shift to
state j at year t + 1; and ∑N is the total number of pixels at all states.
Based upon these probability values, a transition probabilitymatrix was
established.
Table 2
Ranges in environmental variables values: Min—minimum; Max—maximum; Mean—
mean; and SD—standard deviation.

Type Variable Min Max Mean SD Units

Water dynamics Current velocity 0.16 1.65 0.55 0.15 m s−1

Wave exposure 0.09 0.54 0.33 0.08 m s−1

Topography Depth −647 279 −57.96 64.28 cm
Sea floor slope 0.00 79.97 12.03 12.63 degrees

Water
characteristics

Salinity 2.30 28.80 21.12 2.58 PSU
2.4. Habitat modelling

In order to obtain accurate predictions, an adequate selection of the
modelling algorithm is critical. As an arbitrary selection of a single
modelling algorithm could lead to sub-optimal results (Elith et al.,
2006), multiple SDMs were built for each of the six presence data sub-
sets using the predictor variables included in Table 2. Eight different
modelling techniques were applied, in order to determine the best
modelling technique for each presence data subset. The techniques
adopted included 5 machine-learning methods and 3 regression-based
methods (Table 3). Machine-learning methods include different algo-
rithms that derive the mapping function or classification rules induc-
tively, directly from the training data (Breiman, 2010; Gahegan, 2003).
Regression-based models include a Generalized Linear Model (GLM)
and its ‘non-parametric’ extensions (Guisan et al., 2002).

For modelling purposes, pseudo-absences were created along the
never occupied area, avoiding spatial overlap with the presences. En-
tering the different presence data subsets as a dependent variable and
the selected environmental variables as the predictors, spatial distri-
bution modelling was performed.

Area Under the receiver operating characteristic Curve (AUC) was
selected as an evaluation method (Fielding and Bell, 1997), since it is
amongst the most widely-applied measures of model accuracy within
the context of SDMs (Raes and ter Steege, 2007). The AUC provides a
summary measure of model discrimination accuracy (Pearce and
Ferrier, 2000) being equivalent to the probability that a model ranks
a randomly-selected presence site, higher than a randomly-selected
absence site (Liu et al., 2011). AUC values range between 0.5 (random
sorting) and 1 (perfect discrimination). This method is known to be
an appropriate and useful way to summarize model performance, es-
pecially when comparing different modelling methods (Franklin,
2009; Lobo et al., 2008). The AUC values for each model were com-
puted using k-fold validation (5 groups), with the ‘evaluate’ function
of the R package ‘dismo’ (Hijmans et al., 2012).

Variable importance analysis was computed for each selected model
applying the specific functions from their corresponding packages
(Table 3). Relative importance of variables is obtained as a percentage
formachine-learning basedmethods. Thus, in order to compare resulting
rankings, with regression-basedmethods results, the obtained standard-
ized regression coefficients were rescaled to percentages.

2.5. External evaluation of the models

In order to perform the external evaluation of the models, CPA was
considered as the reference area to be predicted; this area excludes
the occasional presences and could be considered as the most accu-
rate approximation of the entire potentially-suitable habitat. Firstly,
software 2006
3 Artificial Neural

Networks
R package:
nnet

Venables and
Ripley, 2002

4 Random Forest R package:
randomForest

Liaw and
Wiener, 2002

5 Support Vector
Machines

R package:
kernlab

Karatzoglou
et al., 2004

Regression-based
models

6 Generalized Additive
Models

R package:
gam

Hastie, 2011

7 Generalized Linear
Models

R package:
dismo

Hijmans et al.,
2012

8 Multivariate Adaptive
Regression Splines

R package:
earth

Milborrow et
al., 2012
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in order to convert the continuous probability maps generated by the
models (with values ranging from 0 to100) into binary predictions
maps (suitable and unsuitable habitat), probability thresholds were
identified. Threshold values were obtained with the ‘evaluate’ function
of the R package ‘dismo’ (Hijmans et al., 2012), maximizing sensitivity
(true positive rate: TPR, hereafter) and specificity (true negative rate:
TNR, hereafter). In the case of the core area model, two thresholds
were identified to establish the binary maps: accurate (core model 1:
maximizing TPR and TNR) and broad (core model 2: threshold fitted
in 25% of the probability). Under this second threshold, areaswith a pre-
dicted probability greater than 25% were considered as being suitable
areas. For evaluation, binary prediction maps were compared to the
CPA. The TPA model was not used in the model evaluation, since it
was built based upon a larger presence area than the CPA. Four different
classes were distinguished in the resulting maps: (i) never vegetated
and predicted as unsuitable (X11); (ii) never vegetated and predicted
as suitable (X12); (iii) vegetated and predicted as unsuitable (X21);
and (iv) vegetated and predicted as suitable (X22). A confusion matrix
(also called an error matrix) was built for each model based on the
area (in hectares) occupied by each of the above defined classes
(Table 4). Different accuracy measures can be computed from the con-
fusion matrix (Congalton, 1991). In order to assess the prediction accu-
racy of the selected models, omission and commission errors were
calculated. The error values range between 0 (no error) and 1 (highest
error). Omission error, defined as the exclusion error or underestima-
tion, is indicative of the accuracy of the model classifying observed cat-
egories. High omission error (values greater than 0.5) implies low
accuracy, since the model is not able to predict the observed presences
as being suitable areas. Commission error, defined as the inclusion error
or overestimation, could be interpreted as being a potential area that is
not occupied by the species due to the dispersal limitation of the spe-
cies, or other environmental factors which are limiting the dispersion
(Guisan and Zimmermann, 2000). Therefore, the relative cost of under-
estimation is higher than that of overestimation (Fielding and Bell,
1997).
350

400

300

Disappeared

Colonized

Stable
3. Results

3.1. Dynamics of the intertidal seagrass beds

Interannual changes in seagrass presence were divided into: colo-
nized (i.e. area newly vegetated, in comparison with the preceding
monitoring year); stable (i.e. area vegetated at present, as well as dur-
ing the preceding monitoring year); and disappeared (i.e. area vege-
tated in the preceding monitoring year, but not in the present year)
(Fig. 3). From 2001 to 2007, the population maintained a stable sur-
face area of around 150 ha. On average, colonized and disappeared
areas showed remarkably similar transition probabilities of 12.7%
and 12.9%, respectively (Table 5). Stable presence areas made up
20% of the total presence area, whereas stable unvegetated areas
accounted for 54.3% (Table 5).
Table 4
Components of the confusion matrix.

Model

Unsuitable Suitable Subtotal Omission
error

Observed Never
vegetated

X11 X12 ∑X1. 1-(X11/∑X1.)

Vegetated X21 X22 ∑X2. 1-(X22/∑X2.)
Subtotal ∑X.1 ∑X.2
Commission
error

1 − (X11/
∑X.1)

1 − (X22/∑X.2)
3.2. Best SDM technique selection

Based upon the AUC evaluation method, a consistently high predic-
tive accuracy was found for the SDMs built on the different presence
data subsets (Table S1). The machine-learning methods: Boosted Re-
gression Trees (BRT) and RandomForest (RF),were the best performing
techniques; in contrast, GLM showed the lowest AUC values (Table S1).
BRT provided the most accurate models for TPA and CPA; and RF for
core area and the three random selections of four monitoring years.

3.3. Variable relative importance on selected SDMs

For all presence data subsets, current velocity was the most impor-
tant variable determining the species distribution. This variable was
followed bywave exposure and depth for the TPA and the three random
subsetsmodels (Table 6). The ranking of the predictor variables' impor-
tance was different for the CPA and the core area subsets models. The
CPA model ranked depth as a more important variable than wave
exposure. For the core area model, the importance of sea floor slope
increased considerably, it was the second most important variable
explaining the species distribution, followed by depth (Table 6).

3.4. Model external evaluation

Predicted suitable areas presented a similar spatial pattern (Fig. 4).
All of the maps predicted most of the observed presence areas as
being suitable, but also predicted some areas to be suitable where the
species was not observed, such as the areas to the east and west of the
CPA. Suitable areas were more limited in the case of the core area
models and they were more extended in all other cases.

Judged from the omission and commission errors' calculations
(Table S2), core area models were the least accurate models predicting
the CPA: they showed the highest omission errors, but presented the
lowest commission errors. When the broad threshold was applied to
the core area model (threshold fitted in 25% of the probability), the
resulting binary map (core 2) showed a lower omission error. All
other models had a very low omission error, whereas the commission
error was relatively high.

4. Discussion

4.1. Spatio-temporal dynamics of an intertidal seagrass bed

During the 14 years studied, Z. marina beds in the Ems estuary
showed a remarkably similar transition probability of colonized and
disappeared areas: on average, 12.9% of the vegetated areas turned
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Fig. 3. Dynamics of Zostera marina beds in the Ems estuary: colonized (area newly veg-
etated, in comparison with the preceding monitoring year); stable (area vegetated at
present, as well as during the preceding monitoring year); and disappeared (area veg-
etated in the preceding monitoring year, but not in the present year). Dashed line
shows the total area covered by the species in the second year mentioned in each bar.
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Table 5
Transition probability matrix showing surface mean and standard deviation values in
ha and in percentages per each change class (non-occupied, colonized, disappeared
and stable).

Year + 1

Absence Presence

Year Absence 248.77 ± 78.38 58.35 ± 36.87
54.30% 12.70%
(Non-occupied) (Colonized)

Presence 58.87 ± 44.43 91.77 ± 50.60
12.90% 20.00%
(Disappeared) (Stable)

61M. Valle et al. / Journal of Sea Research 83 (2013) 56–64
into a bare state each year whereas, on average, 12.7% of the bare areas
became colonized each year. This pattern confirms the dynamic popula-
tion strategy of the species: this is probably the best strategy in a dynam-
ic environment, such as the Wadden Sea. This high reproduction or
regrowth rate, which is characteristic of r-strategy species (MacArthur
and Wilson, 1967), enables the species to recover from disturbance
and is encountered in frequently-disturbed sites (Trémolières, 2004).
The dynamics of the Ems estuary population are consistentwith the rel-
atively high yearly fluctuations of eelgrass presence in other Dutch and
German intertidal seagrass populations (Bos et al., 2005; Dolch et al.,
2012) (Table 1). Also, in other parts of the world, seagrass beds are
reported to be dynamic: contours of beds may shift; extents may
‘pulse’; likewise, new beds may form where others disappear (e.g., den
Hartog, 1971; Krause-Jensen et al., 2004; Martinet, 1782). This observa-
tion emphasizes the importance of protecting the suitable eelgrass hab-
itats in addition to existing eelgrass beds, for which we evaluated
modelling techniques in this research.

4.2. Comparison between SDMs techniques

Many authors have performed comparisons between multiple SDM
techniques (Elith et al., 2006; Oppel et al., 2012; Segurado and Aráujo,
2004; Zaniewski et al., 2002). Results from the present study have
shown a better performance of the machine-learning methods in com-
parisonwith regression-basedmethods. The GLM technique performed
particularly poorly for all presence data subsets. For the TPA and the
CPA models, BRT obtained the highest AUC values; whilst RF produced
the highest AUC for the core area model and the three models based
upon random selections of four monitoring years (Table S1). BRT tech-
nique combines two algorithms: the boosting algorithm which itera-
tively calls the regression-tree algorithm to construct a combination
or ‘ensemble’ of trees (Elith et al., 2006). The RF algorithm is able to fit
complex non-linear surfaces from high-dimensional input data (Cutler
et al., 2007). The use of both the BRT and RF techniques is presently
becoming increasingly popular (Bisrat et al., 2012; Elith et al., 2006;
Table 6
Variable relative importance ranking for each of the selected models. The relative im-
portance value of the variable is shown within parentheses (in %). Key: TPA—Total
Presence Area; CPA—Conservative Presence Area; CORE—Core area; R1—Random selec-
tion 1; R2—Random selection 2; R3—Random selection 3.

TPA CPA CORE

Current velocity (40.03) Current velocity (33.99) Current velocity (22.65)
Wave exposure (30.49) Depth (31.75) Sea floor slope (22.43)
Depth (19.02) Wave exposure (25.92) Depth (21.04)
Salinity (8.37) Sea floor slope (5.11) Wave exposure (17.94)
Sea floor slope (2.09) Salinity (3.23) Salinity (15.95)

R1 R2 R3

Current velocity (28.60) Current velocity (26.57) Current velocity (28.06)
Wave exposure (21.89) Wave exposure (22.30) Wave exposure (22.34)
Depth (19.64) Depth (21.96) Depth (22.12)
Sea floor slope (16.92) Salinity (15.39) Salinity (14.23)
Salinity (12.94) Sea floor slope (13.77) Sea floor slope (13.25)
Williams et al., 2009). Thesemachine-learningmethods provide a num-
ber of advantages over the more traditional GLM approach, including:
robust parameter estimates; model structure learned from data; and
easy implementation of complex interactions.

4.3. Differences in variables' relative importance

Current velocity and wave exposure were found to be the most im-
portant variables predicting the species presence for TPA and for the
three randomly-selected years data subsets models, whereas depth
and sea floor slope were identified as being important variables to pre-
dict CPA and core area. Depth was more relevant in predicting the CPA
and core area, than predicting TPA and the three random selections of
four monitoring years. This outcome could be related to the more spe-
cific habitat requirements of the species (narrower depth range) in sta-
ble areas, such as CPA and core area; in contrast to the broader depth
range associated with the incidental presences included in the TPA
and in the three random selections of four monitoring years. Sea floor
slope acquired higher importance for predicting the core area, probably
because the core area is restricted largely to flat intertidal areas. The sea
floor slope is the consequence of the geomorphology of the intertidal
flat and coincides with higher local wave impact; this is partly a conse-
quence of the slope, but partly due to the vicinity of the deep channels
which permits the buildup of the waves. The presence points included
in the models built for the three data subsets of four randomly-
selected years had a wider distribution; this probably explains the doc-
umented similarity with the variables' importance in the TPA model.
The high importance of current velocity for all scenarios, is consistent
with thewell-documented influence of thewater dynamics on seagrass
distribution (e.g. Bos and van Katwijk, 2007; Fonseca and Bell, 1998;
van Katwijk and Hermus, 2000). Wave action has severe effects on
seagrasses due to the continuous drag force on the leaves (Bos et al.,
2005), together with resuspension of the sediments and subsequent
burial of seagrasses (Bell et al., 1999; Fonseca et al., 2000; Han et al.,
2012). Increased erosion and sedimentation was found also to affect
negatively Z. marina settlement in the Dutch Wadden Sea (van
Katwijk et al., 2000). Depth is important, as it determines the availabil-
ity of light, which is essential to drive photosynthesis and, hence,
growth (Greve and Binzer, 2004); however, it is also related directly
to duration of exposure to rehydration, which defines the upper and
lower limits of seagrass zonation (Bos et al., 2005). The semi-annual
flexible type of Z. marina grows in the mid-intertidal zone, being less
susceptible to desiccation than the perennial morphotype with stiffer
sheaths, which grows in the subtidal zone (Keddy and Patriquin,
1978). In the Wadden Sea, the lower depth limit of the species studied
was found to be defined directly by water dynamics (van Katwijk and
Hermus, 2000). In the present work, this is supported by the higher im-
portance of depth in predicting theCPA and the core area. Sea floor slope
has been identified previously by other authors as an important regulat-
ing factor for seagrass distribution (Bekkby et al., 2008; Narumalani et
al., 1997). The negative influence of high salinity has been acknowl-
edged by many authors (Bos et al., 2005; Kamermans et al., 1999; van
Katwijk et al., 1999), decreasing productivity and vitality.

4.4. Implications for conservation: monitoring frequency and effort

In general, for the designation of protected areas, a low omission
error is critical to allow for the maximal recovery potential of seagrass.
On the other hand, low commission error is also recommendable, in
order to not unnecessarily frustrate other users (i.e. shell collectors, bot-
tom trawling fishermen, tourists) in the area. It is a challenge to coastal
managers to balance between omission and commission errors when
assigning the area that needs to be protected. We applied models
using core areas and areas occupied in four randomly-selectedmonitor-
ing years, to predict a conservative estimate of the presence area, i.e. the
area occupied by seagrass during, at least, 4 years. The core areamodels



Fig. 4. Evaluation maps for: (a) core area model 1, threshold TPR/TNR; (b) core area model 2, threshold 25%; (c) conservative presence area model, threshold TPR/TNR; (d) random
year selection 1, threshold TPR/TNR; (e) random year selection 2, threshold TPR/TNR; and (f) random year selection 3, threshold TPR/TNR.
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predicted a large area as being unsuitable whichwas observed to be oc-
cupied frequently by the species (high omission error). The core area
model was based on a limited area; thus, the resulting area predicted
as being suitable was also limited. The models based on four random
years' selections had a much lower omission error, with only a slightly
higher commission error. Surprisingly, they performed equally well as,
or even better than, the model based on the CPA.

Guisan and Zimmermann (2000) summarized that omission and
commission errors in species distribution models, could result: from
the low relevance of the environmental variables used in the model;
from algorithmic errors; or from biological errors. This observation
must be considered when interpreting the results obtained. Environ-
mental variables must be representative of the period studied and a
proper selection is critical (Elith et al., 2006). The present results
indicate that a proper prediction of the habitat area that needs to be
protected requires only a limited number of monitoring years; like-
wise, that these years do not have to be consecutive; this suggests
that intensive monitoring is not necessary. For the studied case of
the Ems estuary, spatial distribution data from four monitoring
years could be enough to establish an accurate habitat suitability
model of Z. marina. Models based upon four monitoring years' data
subsets rendered an equal or even better suitability model, as com-
pared to the models based upon all of the monitoring data (14 mon-
itoring years in total). Applying the model to a similar area, e.g. the
Wadden Sea east, could assist in determining the extent to which
this minimum necessary monitoring frequency is comparable be-
tween sites. It should be noted that, monitoring may serve more pur-
poses than only establishing the area that needs to be protected.
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Indeed, annual mapping is highly valuable for deriving a mechanistic
understanding of the “wax and wane” of the seagrass, especially in a
situation with large changes and under a gradual decline. Omission
and commission errors obtained in the case of the core area model
showed that the reduction of seagrass beds to core areas will reduce
severely the habitat suitability prediction capacity. Management
measures of those affected beds may include closure of a larger area
surrounding the bed.

In conclusion, the prediction of suitable habitats for Z. marina species
in the Ems estuary can be computed based upon relatively few environ-
mental variables. Machine-learning methods outperformed regression-
based methods, showing a higher prediction power. When limited
areas (core areas) were modelled, the prediction accuracy of the poten-
tial suitable habitats decreased. Prediction of suitable habitats improved
with SDMsbased upondistribution data from, at least, four years ofmon-
itoring. The methodology presented offers a promising tool for selecting
realistic conservation areas for those species that show high population
dynamics, such as many estuarine and coastal species. The suitable
habitats for the species, thus for protection, canbe establishedby applying
SDMs based upon a few years ofmonitoring. This approach is particularly
important for target or key species which are protected under environ-
mental frameworks (e.g. Habitat Directive (92/43/EEC)), but could also
be applied to economically-valuable species. The method would benefit
from further testing on other species, with available data for similar
long-term monitoring, to determine: (i) how the minimal monitoring
period depends upon the dynamics of the species; and (ii) to which ex-
tent the output of the method depends upon the clustering of the
species. Considering the difficulties to overcome in the protection of
habitats that could be temporally unoccupied, especially in those areas
that are used for economic activities, the proposed method provides
tools for policy- and decision- makers to set science-based criteria for
the delimitation of conservation areas.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.seares.2013.03.002.
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